음향:signal_processor:preamp:preamp_topology
[홈레코딩 필독서]"모두의 홈레코딩"구매링크
가성비 있는 녹음실 찾으시나요? 리버사이드 재즈 스튜디오에서 녹음하세요!
[공지]회원 가입 방법
[공지]글 작성 및 수정 방법
차이
문서의 선택한 두 판 사이의 차이를 보여줍니다.
양쪽 이전 판이전 판다음 판 | 이전 판 | ||
음향:signal_processor:preamp:preamp_topology [2025/03/26] – [프리앰프 토폴로지] 정승환 | 음향:signal_processor:preamp:preamp_topology [2025/06/05] (현재) – [FET] 정승환 | ||
---|---|---|---|
줄 22: | 줄 22: | ||
{{ : | {{ : | ||
- | 진공관은 입력 임피던스가 커서, 작은 입력신호도 대역폭의 영향을 거의 받지 않고 감도를 높게 유지할 수 있습니다. 보통 진공관 회로는 마이크의 밸런스 출력을 받는 차동 증폭 회로를 구성할 수 있고 입력 임피던스가 높기 때문에 입력 트랜스포머가 필요 없을 수도 있습니다. 입력 트랜스포머가 마이크 출력의 밸런스 신호를 다시 신호처리를 위한 언밸런스 신호 전환을 위한 경우에도 | + | 진공관은 입력 임피던스가 커서, 작은 입력신호도 대역폭의 영향을 거의 받지 않고 감도를 높게 유지할 수 있습니다. 보통 진공관 회로는 마이크의 밸런스 출력을 받는 차동 증폭 회로를 구성할 수 있고 입력 임피던스가 높기 때문에 입력 트랜스포머가 필요 없을 수도 있습니다. 입력 트랜스포머가 마이크 출력의 밸런스 신호를 다시 신호처리를 위한 언밸런스 신호 전환을 위한 경우에도 전압 강하로는 사용되지 않는 경우가 많습니다.((오히려 신호 전압을 높히는 용도로 사용되는 경우도 있을 수 있습니다.)) |
하지만 진공관 증폭의 특성상, 높은 신호가 들어오면 **새츄레이션**이 발생합니다. 새츄레이션은 진공관이 증폭할 수 있는 신호의 한계에 도달했을 때 발생하는 포화 현상으로, | 하지만 진공관 증폭의 특성상, 높은 신호가 들어오면 **새츄레이션**이 발생합니다. 새츄레이션은 진공관이 증폭할 수 있는 신호의 한계에 도달했을 때 발생하는 포화 현상으로, | ||
줄 28: | 줄 28: | ||
진공관은 고정된 플레이트 전압을 높게 걸고, 전류로 증폭량을 조절하는 방식입니다. 큰 전압을 가진 신호로 내부에서 증폭된 후, **출력 트랜스포머**를 통해 라인 레벨의 전압으로 감압하여 출력되는데, | 진공관은 고정된 플레이트 전압을 높게 걸고, 전류로 증폭량을 조절하는 방식입니다. 큰 전압을 가진 신호로 내부에서 증폭된 후, **출력 트랜스포머**를 통해 라인 레벨의 전압으로 감압하여 출력되는데, | ||
- | 결론적으로, | + | 결론적으로, |
- | * [[유저위키: | + | * [[instrument_wiki: |
<WRAP centeralign box> | <WRAP centeralign box> | ||
- | Tube-tech MP1A</ | + | [[instrument_wiki: |
줄 64: | 줄 64: | ||
BJT 방식도 진공관 방식과 마찬가지로 출력 시 출력 트랜스포머를 거쳐 신호를 전달합니다. 이로 인해 트랜스포머에 의한 왜곡이 발생할 수 있습니다. ((Millennia와 같은 장비는 트랜스포머 대신 Active FET Buffer를 사용하여 밸런스 출력 회로를 구성하기 때문에, 트랜스포머에 의한 새츄레이션이 없고 매우 깨끗하고 투명한 음색을 제공합니다.)) | BJT 방식도 진공관 방식과 마찬가지로 출력 시 출력 트랜스포머를 거쳐 신호를 전달합니다. 이로 인해 트랜스포머에 의한 왜곡이 발생할 수 있습니다. ((Millennia와 같은 장비는 트랜스포머 대신 Active FET Buffer를 사용하여 밸런스 출력 회로를 구성하기 때문에, 트랜스포머에 의한 새츄레이션이 없고 매우 깨끗하고 투명한 음색을 제공합니다.)) | ||
- | * [[유저위키: | + | * [[instrument_wiki: |
- | {{ : | + | <WRAP box centeralign> |
+ | {{ : | ||
+ | [[instrument_wiki: | ||
줄 77: | 줄 79: | ||
* 하드 클리핑 | * 하드 클리핑 | ||
- | FET는 **전계 효과 트랜지스터**(Field Effect Transistor)로, | + | FET는 **전계 효과 트랜지스터**(Field Effect Transistor)로, |
FET는 주로 단일 소자로 사용하는 경우가 많으며, BJT처럼 다단계로 증폭하지 않는 것이 일반적입니다. 그 이유는 FET가 높은 입력 임피던스와 낮은 출력 임피던스 특성을 갖기 때문에, 다단 증폭이 필요하지 않거나 오히려 비효율적일 수 있기 때문입니다. 또한 FET는 증폭 특성이 일정하지 않기 때문에 여러 개를 다단계로 연결하는 것은 일반적이지 않습니다. FET 가 높은 입력 임피던스를 가지기 때문에 입력 트랜스포머 구성도 필요 없습니다. | FET는 주로 단일 소자로 사용하는 경우가 많으며, BJT처럼 다단계로 증폭하지 않는 것이 일반적입니다. 그 이유는 FET가 높은 입력 임피던스와 낮은 출력 임피던스 특성을 갖기 때문에, 다단 증폭이 필요하지 않거나 오히려 비효율적일 수 있기 때문입니다. 또한 FET는 증폭 특성이 일정하지 않기 때문에 여러 개를 다단계로 연결하는 것은 일반적이지 않습니다. FET 가 높은 입력 임피던스를 가지기 때문에 입력 트랜스포머 구성도 필요 없습니다. | ||
- | FET는 일반적으로 | + | FET는 일반적으로 **마이크 회로**에서 **임피던스 컨버터**로 많이 사용됩니다. 이는 **마이크에서 발생하는 고임피던스 신호를 저임피던스 신호로 변환**하여 오디오 장비로 전달할 수 있게 해주는 역할입니다. FET의 증폭량이 크지 않음에도 불구하고 임피던스 컨버터 역할로는 충분한 이유는, 큰 증폭이 필요가 없고, 신호 전송을 위해 적절한 임피던스 변환만 필요하기 때문입니다. 따라서, 마이크에 사용된 FET 회로는 임피던스 컨버터로써 일반적으로 20dB의 증폭을 하여 10:1 출력 트랜스포머로 다시 20dB를 감압하는 방식으로 사용하여 임피던스를 변환하는 역할로 사용됩니다. |
또한 FET 기반의 인라인 프리앰프는 특히 **리본 마이크**나 **다이내믹 마이크**와 같이 고 임피던스 신호를 가진 마이크에서 사용됩니다. 대표적인 FET 기반 인라인 프리앰프로는 **Cloudlifter**, | 또한 FET 기반의 인라인 프리앰프는 특히 **리본 마이크**나 **다이내믹 마이크**와 같이 고 임피던스 신호를 가진 마이크에서 사용됩니다. 대표적인 FET 기반 인라인 프리앰프로는 **Cloudlifter**, | ||
줄 91: | 줄 93: | ||
- | =====Discrete | + | =====디스크리트 |
<WRAP right column 25%> | <WRAP right column 25%> | ||
줄 103: | 줄 105: | ||
{{ : | {{ : | ||
- | Discrete | + | 디스크리트 |
- | Op-Amp(IC)는 높은 입력 레벨에 따라 대역폭이 줄어드는 GBW 현상의 영향을 크게 받습니다. 반면, | + | Op-Amp(IC)는 높은 입력 레벨에 따라 대역폭이 줄어드는 GBW 현상의 영향을 크게 받습니다. 반면, |
- | 또한, | + | 또한, |
- | * [[유저위키: | + | * [[instrument_wiki: |
- | * [[유저위키: | + | * [[instrument_wiki: |
<WRAP centeralign box>{{ : | <WRAP centeralign box>{{ : | ||
- | API 512c</ | + | [[instrument_wiki: |
=====Op-Amp(IC)===== | =====Op-Amp(IC)===== | ||
줄 151: | 줄 153: | ||
**Op-Amp(IC)** 마이크 프리앰프의 경우 신호의 **DC 바이어스 전압**이 **BJT**나 진공관 방식에 비해 크지 않기 때문에 진공관이나 트랜지스터처럼 출력 트랜스포머는 필요 없습니다. 하지만 싱글형 **Op-Amp** 설계인 경우에는 밸런스 입력으로 들어온 신호를 언밸런스 신호로 변환해야 하므로 **입력 트랜스포머**를 사용하는 경우도 있습니다. **차동 입력 IC**를 사용하는 경우에는 입력 트랜스포머가 필요 없습니다. | **Op-Amp(IC)** 마이크 프리앰프의 경우 신호의 **DC 바이어스 전압**이 **BJT**나 진공관 방식에 비해 크지 않기 때문에 진공관이나 트랜지스터처럼 출력 트랜스포머는 필요 없습니다. 하지만 싱글형 **Op-Amp** 설계인 경우에는 밸런스 입력으로 들어온 신호를 언밸런스 신호로 변환해야 하므로 **입력 트랜스포머**를 사용하는 경우도 있습니다. **차동 입력 IC**를 사용하는 경우에는 입력 트랜스포머가 필요 없습니다. | ||
- | * [[유저위키: | + | * [[instrument_wiki: |
- | * [[유저위키: | + | * [[instrument_wiki: |
- | * [[유저위키: | + | * [[instrument_wiki: |
- | * [[유저위키: | + | * [[instrument_wiki: |
<WRAP centeralign box> | <WRAP centeralign box> | ||
- | Focusrite ISA One</ | + | [[instrument_wiki: |
=====하이브리드====== | =====하이브리드====== | ||
줄 167: | 줄 169: | ||
{{ : | {{ : | ||
- | {{tag> | + | {{tag> |
[공지]회원 가입 방법
[공지]글 작성 및 수정 방법
음향/signal_processor/preamp/preamp_topology.1742967775.txt.gz · 마지막으로 수정됨: 저자 정승환