컴퓨터가 숫자를 표현하거나 계산할 때 사용하는 두가지 방식
8 자리로 숫자표현을 할 때
위의 두가지 방식 중에 위의 것이 정수의 표현 방식이고 아래와 같은 방식이 부동소수(자리가 정해지지 않은 소수점)의 표현 방식이다.
따라서, 컴퓨터에서 제한된 자리수를 가지고 숫자를 표현할 때 부동소수 방식을 사용하면 훨씬 더 많은 범위 및 훨씬 해상도 높은 숫자(1.0000001~1.9999999 처럼 1 과 2사이를 엄청나게 세분화하여 표현 가능)를 표현할 수 있다. 다만 계산의 정확성은 정수형 표현이 정확하고 계산의 속도 또한 빠르다.3)
Double Precision
배정밀도(double precision)는 정수와 부동소수점을 모두 다루는 방법 중 하나입니다.
1. 정수형에서의 배정밀도: 정수형에서 배정밀도는 더 많은 비트를 사용하여 정수를 표현합니다. 예를 들어, 48비트 배정밀도 정수는 48개의 비트를 사용하여 정수를 나타내며, 부호 비트와 숫자 비트로 나뉩니다. 배정밀도 정수를 사용하면 더 큰 정수값을 표현할 수 있습니다. 이는 정수 데이터를 더 큰 범위로 표현하거나 더 높은 정밀도로 다룰 때 유용합니다.
2. 부동소수점에서의 배정밀도: 부동소수점에서 배정밀도는 더 많은 비트를 사용하여 부동소수점을 표현합니다. 일반적으로 배정밀도는 64비트를 사용하며, 부호 비트, 지수 부분, 그리고 가수 부분으로 나뉩니다. 배정밀도를 사용하면 더 큰 숫자를 더 정확하게 표현할 수 있습니다. 이는 과학 및 엔지니어링 분야에서 높은 정밀도의 계산이 필요한 경우에 유용합니다.
정수와 부동소수점에서의 배정밀도는 각각 데이터 형식에 따라 다르지만, 모두 더 큰 범위와 높은 정밀도를 제공하여 계산의 정확성을 향상시키는 데 사용됩니다.
부동소수 연산의 정밀성 손실 문제를 구체적인 예시로 설명해보겠습니다.
예를 들어, 우리가 다음과 같은 두 개의 부동소수를 더한다고 가정해봅시다:
이 두 부동소수를 더하면 우리는 이 나와야 한다고 예상할 수 있습니다. 그러나 컴퓨터에서는 부동소수점을 표현할 때 소수점 이하의 정밀도에 한계가 있기 때문에 정확한 결과를 얻기 어렵습니다.
실제로 컴퓨터에서 이러한 덧셈을 수행하면 다음과 같은 결과가 나올 수 있습니다:
따라서 이 두 수를 더하면 정도의 값이 나올 수 있습니다. 이것은 우리가 원했던 과 약간 다른 값이며, 부동소수점 연산의 정밀성 손실로 인해 발생한 것입니다.4)
이러한 예시를 통해, 부동소수 연산에서의 정밀성 손실이 어떻게 발생하는지 좀 더 구체적으로 이해할 수 있습니다.
이러한 오차는 금융 분야에서의 시간, 금액 계산이나, 공학에서의 정밀 계산이 필요한 분야에서는 큰 오류를 범할 수 있지만, 그래픽 분야 또는 오디오 분야에서는 큰 문제가 되지 않습니다. 그래서, 그래픽 카드에서 쓰이는 GPU에서는 거의 부동소수형 연산자를 가진 칩을 사용하고, 오디오 쪽에서는 최근 부동소수형 DSP 칩들이 레이턴시가 짧아진 제품들이 나오면서5) 부동소수형 연산칩을 사용하는 경향이 있습니다.